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SCIENTIFIC REPORTS
thewr purpose and place

THE EVER INCREASING NEED TO BE INFORMED has caused an
ever increasing volume of publications. The very quantity
of these publications, however, makes it difficult to satis-
fy the need, because it becomes more and more arduous
to locate the literature pertinent to any one subject; and
because any one of us becomes more and more weary of
having so much to read. Moreover, only a small minority
of these publications may help satisfy the need, because
an overwhelming majority is void of content.

Consequently, it is imperative to present to the public
only manuscripts which do carry new information without
undue verbiage; hoping to be judged not by the number
of published pages but by their quality. In particular,
papers in the field of Applied Mathematics ought to be
published only if they contain one or more of the follow-
ing items: new basic results, new methods, new applicat-
ions, new numerical results, new presentation of difficult
and important topics, up-i>-date bibliographies; and if
the number of their pages is not dictated by the desire of
imposing upon the superficial reader.

To discharge our contractual obligations, we publish
Technical or Scientific Reports, such as the one you now
bave in your hands. It has been our constant policy to
see to it, that they satisfy the above strict criterion.
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Abstract

Lgtmr{m',ﬁ) be the largest integer such that there exists a
Bin;try group code (n %) all of whose non-zero elements have weight
equal to er lafger than u-(n#).

In this report values of r(n ®) are given for og 4“6 and
Btnt /o0 , as well as for oz “<n = 2% . Further, new upper and
iower bounds are obtained which are easy to compute and, in certain

regions, better than other known bounds.
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Introduction

We study here the functionur that associates with each pair of
integers n,% with o<® 4« mn , the largest integer 4 #) such that there
exists a binary group code A(),#) each of whose non-zero elements hag
a weight not smaller than v (n, o).

Great efforts have been spent by many scientists in the investigation
of w’ and of equivalent or related notioms. Sophisticated and powerful
tools have been used to derive bounds or some isolated values. Still,
rather little is known.

We have approached the topic afresh, starting with the naive
ambition to describe w” by formulas or, at least, by extensive tables.
Clearly we have not succeeded. But using only very elementary mathematics
and hand computation (together with some known results), we have
obtained, in particular, new upper and lower bounds, and new values.

The numerical results are given in two tables in the last section:
one covers the range B£6, N= 706 , and the other the range oceRE ps av

The better bounds, given in section 3, are restricted to the

range o< B Zn = azﬁ"

They are very easy to compute and, in some
regions, are better than any other bound known to us.

We hoped eventually to characterize s by establishing functional
equations satisfied by it. We failed, perhaps because the many
properties listed turmed out to be consequences of only 8 of them,
These are satisfied by a class of functions, not only by«w”. To obtain
bounds, then, we have only to find the smallest function and the

largest one within the class.

A paper by J. H. Griesmer (A Bound for Error-Correcting Codes,
I.B.M.J.R.D., 4, pp.532-542, Nov. 1960) has recently been brought to
our attention. We plan to study in a later report the relations

between his work and ours.

itdi
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[
1. Functional relations satisfied by 4/ .

For any integral valued function § defined for pairs (n,®) of integers

satisfying o.®=wn , consider the following functional relations:
1. Hy‘s,w)' = | )
2. fnR)= Flary, 2)
3. Fln, B $(n-1, B-/)
b $(nt) + FOmR)E Fnem, B)< FR) +m
5. $nf)= Q% Fln-, )= ah~/.

We will now show that 4~ satisfies all five relations and thus all

consequences of them, in particular those that we will derive below.

Proposition 1 The function s~ satisfies l. to 5.

The proofs of 1. and 2, atre trivial. To prove 3., delete the first row
and the first column of the generating matrix in "echelon form' of an
\(y\‘)‘%)' code: what remains is the generating matrix of an (M-I, 20, code,
with not-smaller minimal weight.

The first part of 4. can be obtained by juxtaposing the generating
matrices of an{y,®&) and an (m,R) code; and the second part is obvious.
Finally 5., also well known, is proveun by adding an "overall parity
check" to the elements of a code (’n»l;“ﬁ) with‘/u‘(A)=,w‘(n—/;£).
Because of Proposition 1, part of the study of 4 can be considered as

the study of the relatioms L. ~ 5.

Proposition 2 Relations 2. and 3. imply
6. fnB)= F(n, B-1)
T $ln-, Rr2 $ln, R,

In fact $(nf)= Floer, )& -f(n}‘;’”e—r) yields 6.; which, with 2., gives
et e ) 2 Fln-, )< $ (O, 2.

Proposition 3 If octh= % and fﬁ n-2 , then relations 3. and 4, imply

8. Hnk)t £ + $(n-% L)

B e v——
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Indeed, FnR) = F(n-forL s+ (R-L), Lp(%-2))
i*(};—'ﬂf—ﬁ £) by 3.,
& fln-f,£)r £ by L.

Proposition 4 Relations 1. and 4. imply

9. £ 1)=n.

If p=; , this is 1.: we can thus use induction on » . By L.:

Flnt, 1) 4 50,)) 5 S )= F(n-0,1) +1.
Thus

Sp)= Fpai1)+ 1 = petrr = n,
Proposition 5 Relations 1., 2., and 4 imply that, given two positive
integers £ and g , there exists » such that -P(a,"é)sﬂ—.
If @=/ , take n=f : by 1., £ k)=/ . We can thus assume the
proposition true for all pairs ﬁ)}, with J4.a , and use induction. There
exists then an integer m such that f(wm ®)=a -/ : let, moreover, m be
the largest integer with this property. Then, by k., #(mw, )& F(m &)t/ =a,
but also $(mer, &) 5 Cmbh)=a-/.
Corollary Relations 1., 2., and L. imply that, given a positive integer a,
there are infinitely many pairs n £ such that (%) =a

Proposition 6 Relations 2., 4. and 5. imply
10. )= of-a2 if Flne) B )= a4-1.
In fact, by 5., $(n, &) has to be even. But 2, and k. yield

$(ne,R) 2 $n B2 Fary, &)~ = 2 -2,

Corollary If f(w-k)=a4 -/ , relations 2., k. and 5. imply for

neighboring points the values given in the table below:

£ . XY
h~t 2 -t k-2 = €-2
h Z Rﬁ .?'{ -/ = ,3-[..,2_
Wi 2 21 27 = 2t -l
-0-
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The 4 -column is given by 5. and Prop. 6; the other twe columns by

properties 2., 3., and 6.

Lemma 1 Let -}:,3,. verify 1., 2., 4. and 5. as well as: f-(n/i’)=;(b,“f')‘
for allp, % at which + has an odd value. Then $=gq. .

If ?(y;;ﬁé)‘z,qf_/ , for some n' & we have also F(n! £l= 24~/

by Prop. 5. Thus by assumption §(n E);—.—e}(n,; k)= }[;,,yf.’) : but

then 5. and Prop. 6 imply n=»' . Thus + and . agree whenever one of
them has an odd value; 2. and Prop. 5 show then -ﬁ(y,,fe): ;(y;)'ﬁ) for all
pairs P),’% .

Lemma 2 Let -F,?_ verify 1., 2., 4. and 5. as well as: £(y %), ;(”'-5)
for all n,f at which ¥ has an odd value. Then {2 F -

In fact if c;(n)ﬁ):ozﬁ—/ , for some n;fé we have $(n' R)=2%£-/

Thus ?(y;,’ﬁ)::}(n,"@)?}(n,'ﬂ) and nyn' : consequently

S—(y,l“fe)z ol R #+1 ) 7(n,'fé) . Thus 57? whenever one of them is odd.
Let ?(n, fz) and —}(y,/-&) be both even: there is then-r£>o such that

?(Mf-i,‘,é)‘:}(h,'ﬁ) 5 $(ne R)= FnR) 41

or

r}(m k)= }(n)ﬁ)f—/ L Flsik, &)= $(n, 8).
In the first case we have
$, &)t = Flnsd #)> 9lpat, k)= g(n k),
that is,  £(n £)Z 2(n%).

In the second case

Fn#) = Fnst, 8) > 9. e, &) > g(n %),

hence the lemma.

A very similar proof yields also:

Lemma 3 Let —,C,?_ verify 1., 2., 4. and 5. as well as: 'f(h,‘ﬁ));(n,ﬁ)
for all n,*% at whichj, has an odd value. Then ¥Z g .

Combining the last three results we obtain:

Proposition 7 Let f‘;_ verify 1., 2., 4. and 5. as well as: F¥(n8)Z ;{h,ij
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for all nf at which § [or + ] has an odd value. Then +Z .

Proposition 8 Let 4'-(»)'&) be odd. Then 4. and 5. imply equivalence

between:
a) fn,ft) + $(m,R) = F(nrm, ®)
b) F(neyR) + $0m,Te) = F(nemer, R).

Assume a): then b) follows from the inequalities
Slpewm, )+l = Fink) + F(m )+l = F(nen )+ Fm k) =
Z Flnsimer, R)IE £inem, R) +~ 1.

Gonversely, if b) Holds:
$namer, )=t = Flnr, R) + FlmR)-1= S R) + £m k)=

-§-(n+m; )= f-(n+m+/‘, %)

i

ir

As a consequence:

Corollary Let —F{w)*ﬁ) and '5‘<Yn,’k) be ¢cdd. Then 4. and 5. imply

equivalence between:

a) $nf) + $lmBR)= ¥ hemR)
b) (e, R) + FlmB) = FB) 4 Flmesy &)= Fremer, £)

c) Snr, )+ Flme, R ) = Flnimra, k),

Set .pl(y,)ﬁ):n-ﬁq-) for 62R=n . Then:

Proposition 9 The function ¥, satisfies 1. to 5. Moreover amy function

5 satisfying 1., 3. and L. satisfies also
11. Fn2)= £ (n, ).

For 4= ur , this inequality has been proven also, for instance, in [1]
and {2]. That ¥ satisfies 1. to 5. is obvious. To establish 11., use 3.

to obtain

F(n, 8)= $(n-"B+/, 1) 5

Prop. 4 completes the proof.
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For ocB <k , set now

T2 (n8) =

A if Nz rk+r—/

2F if YR £ P~} on «(Vet)lr b,

Equivalently ]
2 g{‘j‘ ]—I if e = r(Rr)
Hln#) = ., )
2 7_E7-7 if m—l:r(ﬁﬁ),‘—ja) /‘::z_:[g),
or
£ (nk) = iz_fﬁ;]+/ L nw = ()
(-3 » -

o?[%:f;.],n 2 if hri=F(Bu)rg, /=2 k.

Proposition 10 The function —f; satisfies 1. to 5. Moreover any function

4 satisfying 1., 2., 4. and 5. satisfies also
12. £(n, Y= $(n &)

Property 3. is the only one whose proof is not immediate. Assume first
Wt =r(B-r)#r-/ . Then %(n-l, #-1)=ar—/ and n=r® . There exists
then a smallest integer a3y o such that n= (r-a)R+(P-a-1) + b,
for some LZo . Then ﬁ(n{k;: alr-a)-/ if L'—‘o) =2(r-a) if &>o,
In either case, 4. holds.
Assume now V(F-/)+t=i < n=1 « (r+/XR-1)+ ¥Y+/ . This implies
£(n-1, b-N=ar and rR+n 2(rer) T . Again there is a smallest
integer aje such that

(Yma)B +r-a-) 2n 2 (Pea+7)B& + -~ a

and the inequality 4. follows.
In order ito establish 12, we will use Prop. 7. Let us then prove

£(n )z £(n,R) when §(n®) is odd, that is when Nt =r{B+rs)
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If y=y , p=£ and %()%)E)s £(% L) . Assume thus
Fe-1Xbe)-1 %) 2 £ 01000~ %)= ar-a.
Since the right hand member is odd, we have also
—,F((v—l)(ﬁw), )z L(r-1xRp), k) = 2r— 2,
Thus
J-(r(few)—/)“@) = Fcr1X8ps) ¢ k, ,é‘)f. #(Cr—-u,@y,)) &) (B &)

= (il Bpr), 212 H (i Br0) B)#s = 2r-7
= 5'6(r(fz+/)—b',@).
The assumptions of Prop. 7 are hence established and 12. follows.
The inequalities 11. and 12. give easy geometric bounds for the functions
with properties 1. to 5. For fixed R , the graph of & is a straight line
with slope |= Ton 45" 3 but the graph of ¥; can be interpolated by a
straight line J.;%iﬁ' -/, of slope f;; . Thus, for ®=; the two lines
coincide; for #>; , their '"differemce" increases with-® . If we keep
h fixed, % is again a straight line, now with slope -/ . But £
resembles an hyperbola of the typef,i‘/ =~/ , which grows closer to its
asymptotes (and hence farther away from ¥ ) the larger c= 2(n+.)
becomes.
In the following two graphs ;;,.J ;', and 4o have been plotted, once for
‘f?:S, and next for h=/7 .
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2. Study in the region osR% =#u ‘:.z'ﬁz .

It is well known thatw” satisfies:

13. #(€(ak-r), k)= b ot for £.4a., .

This is not a consequence of 1. to 5., as, for instance, % shows. An

easy proof yields:

Proposition 11 Relations L. and 13. imply

*- %, £-1 .
1. $(22 )2 2”1 and G5 p)e 2% for £ . = 2%
The first part of the proposition follows directly from 13. and the
right-hand part of 4. The second part follows from the first and from
the left~hand part of 4:
Letting v=T~ A , we have

2" F(at k) F(a" 2% %)
= Fa® gle 2% L,
It is also known that the following holids for .y
15. F Czi;")é)= 252
Corresponding to Prop. 11, and with a similar proof, we have now:
Proposition 12 Relations k4. and 15. imply

16, $(2E5)2 2% and #(2% £)e 25 for L£enzat

For o« %:lv_’:..zé define a function g, as follows
R~/

n

max (f, (n,%), p-2tt) if pea
k-/) -

2,(n, )
‘e 2%~ B
9,(n, &) = max (2% 54 (n-2%7 %), n+/a.2£“j £ 45 h s nea®
3, (.2% o) = 25

More explicit, but apparently more cumbersome, formulas can be easily

max (;2*"‘) Pt) -2

6},(14,%) if 2

i

derived. It should not be hard also to prove that y where defined,

satisfies 1. to 16.: in fact 3. seems the only non obvious relation.




PARKE MATHEMATICAL L.ABORATORIES, INCORPORATED 7493-SR~T
-ONE RIVER ROAD & CARLISLE, MASSACHUSETTS

We are, however, interested only in the following result:

Proposition 12 Let ¥ satisfy 1. to 16.: then

. g (nk)e Hn®) 1f osg=p= 2%
As long as 3.= % . 17. is relation 12., and thus holds. 1In the next

&
interval, when %Jn,’é): -2 &, we have also

g,0nR)= 2* %y if n= 2%

Our result then follows from 15. and 4. Relation 2. implies then 17. as

long as (}o(n,'ﬁ):-_ ’2§‘2- ; and 2. with 4. imply 17. when 7,(n,'i)=.25"'+j‘i(;)_ﬂ-"": 4 |

Finally 13. and 4. prove our result when 70(,,)%):},,*,_‘ 2%~/ because

this is equivalent to

3ocv\,-fe')=ozﬁ"—r‘ N P LA

Finally, 16. shows % (.'z_ti f) & 1”—(2“; %.).

It will be shown later that 79(“{{:&)""“"(}7‘»@) for % 3 . Some

experimental evidence seems to indicate that, if 'ﬁ>3, max (ar(n, fé)—;o(n, )‘?z))
. ‘ N &z, , ket F-a B-2, K-z
is probably reached around =&~ "+ 2 . Notice that v (R%7'+2 5 Rlm2 #R

- & - ‘ -7 B2
while ?o‘(lf "y o2 tﬁ)::ﬁo (2% ; ﬁ) giving a difference

approximated by

&-/ B-2
2-2 -3 2 + R 9-{__
i # 2 - 2 2~/
or
gy B-3
Cs = By )’3

-3
which tends to 32 vhen & increases.

In parallel to % and Prop. 13, and with similar proof, we obtain an
upper bound as follows.

For oz,‘féf_—_n,::,zi" , let

7,(n,ﬁ)‘ = min (-}, (n,&),&ﬁ—L) for fen= ,25"’
7,(73,'&) = in(n-a®® 2%7) for 2% ., . 2%

-
%(.;f: £)= 2" +/.

~10-
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We have then:

Proposition 1)-L Let ¥ satisfy 1. to 16.: then

18. —f—(n,fe)i‘_c},(n,}é) if oehEns 2

‘é‘-

Again, as for 9, > max(u},(n,l’e)— w(nafé)) seems to be reached at

V= aze"/f- ‘,2&'3' , where the difference is

2

- - - -3
S SIS L % '

» a2

The considerable improvement from the bounds {;) 5 to 9o 4, has been

obtained by imposing the '"boundary values" 13. and 15. It seems natural

that further boundary values would yield better and better bounds. Since

%

w0 is known for n= 2%~ ,,2';

fair approximations to <« for 2% h = PLI But the region B= n< 2

r=223 #®-; we could probably obtain

Vet WP

is of much greater practical interest: and, in it, practically nothing

is known.

Other, better bounds, could
satisfied by «~ were known.
next section. We terminate

known, 4~ for #=¢ and for

also be obtained if other functional relations
A step in this direction is taken in the
this section by plotting y and, when
h=20 . In fig. 5, 6 and 7, e is compared

with the Varsharmov - Gilbert lower bound [3].

=11~
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Difference: (J‘o - Varsharmov )
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3. _Study in the region B« nZ g'fe—/

From Corollary 3. to Proposition 7. of [4] follows that s is ome

of the functions # verifying:

n=!"
19. i 8)e L5 ) 15 nL 22

The usé of this relatiom will not improve the lower bound 20 s but has

some effect on the upper bound. Let 3 be defined for ocs® <n :.‘,2%’) by:
%.CL D =/
y . -
?’Z(V),‘%B = ?L()‘)—l‘v 1) if ne a° =
( RE -1 if n= v% R
(/)fl "))“%>: ‘
2% if he z/ff/) %f/-.b) s Ls3
ch(;zﬁ-—f/) )= 2872

!
b

g2 (2% B) = 272

Proposition 15 Let  satisfy 1. to 19.: then

20. J:(n,’%)/: ?:.(”’ ﬁ) if ocfo=n= ,77@” i

. 2-
The proof is by induction on # . For k= , then n4 R "=/ and 20.
holds by definition of %, - So assume 20. for fe-/ . By 3. we have,

£
for n& 2°°%

72

$nk)e $ln-1, 8-/ )= g.(n-1, -1 ) = 3Cn, £).
Thus assume 5 > ozjé'z’ .
assume M« ﬁé'/ ~/ . In this interval, then, 20. follows at once from
5. and 19. 1In fact ?z(»,ﬁhf%’] if n=yk, #Ees, #Era; thus
we could only have F(#£+3, %)= ;2_(94{ 3 L)+l = RA 4+

but then

Clearly, because of 15. and 19., we can also

S hry B)= aF +2 >[% R

a contradiction.

-17-
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Fig. 8 and 9 illustrate the relations between the five bounds f;, ‘;‘,) Do
Fr Fa GCrosses locate known values of 4. These graphs suggest
that C}L is a rather good upper bound for.w”, whereas Fo should be
further improved. In particular, fig. 8 as well as fig. 5 show

possibly that the knowledge of/a/(azﬁ'z: ﬁ), or a good lower bound for

it, would considerably in;prove F, -

Fig. 10, 11, and 12 compare with Hamming's and Plotkin's upper bounds.

To compute %z for a given pair (n)‘é) with n< o?ﬁ—", determine an integer

r 5o such that

#&-r-2 R-p-/
L n-r £ K

Then ?1(752 é): %'(H—V‘) #-r) is explicitly given in the definition. It
may also be appropriate to observe that %_(h,'ﬁﬂ‘): A (h—); %) for

all r2o : in fact ?2_ is constant for constant n-% .

~18-
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Difference: (Hamming - 9. )

0

0 01

1

0 0 1

0 -1

0-1 0 01

0 0-1 0 0 1

0 0 0-1 0 01

1

¢ 0 0-1 0 0 1

01 0 0 0-1L 0 0 1

2 01 0 0 0-1

0O 0 L

1001 0 0 0-1 001

-1 0 0 1

1l 0 0-1 0 0-2
2 01 0 0-1

01 0 0-1 0 0-2-1 001
0]

0 0-2-1 0 O 1

2 00-1 0 0-L 0 0-2-1 0 01

1 2 0 0-1 0 0-1

0 0-2-1 0 01
2 01 0 00-1 0 0-1 0O0-2-1001

2 2 01 o0 O0-1 0-2-1 0 0-2-1 ¢ 0

2 1 2 0 0-1 0 0-1 0 0~2-~1 0 0 1
322 01 0 0-2-1

1

0-2-1 0 0-2-1 0 O 1

0 0 1

0O 0-2-1 0 O 1

2 32 0 011 00-~2-1L 0=-2-1 0 0-2-1

b 2 1 2 0 0-1 0 0-2-1 0-2 -1

L 2 2

-1 0 01

12 0 0-1 0 0-2-1 0-2-1 0 0-2

-1 0 0-2-1 0 O
0-2-1 0

-1 0 -2

1 2 0 0-1 0 O0-2

3 b 2 2

O‘

L 32 2 01 0 0 0-1 0 0-2-1 0-2-1

4y 2 32 2 01 0 0 0-L 0-2-2-¥ 0-2-1 0 0-2 -1
5 L 2 32 2 010 0-2-10-2-2-10-2-1 0 0-2

y 3 4 2

12 001 0 0-2-1 0-2-2-1-2-2-1 0-2

h4é 1 2 3 k5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 2k 25 26 27
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4. Some scattered values of &~ .

We will denote by P the Plotkin bound:

" By
Pn )= | p2®7 ],
L oR%R_y
Proposition 16 For any meaningful value of w , we have:

A ()’V’(Q &—/)-— 2, Ié) = P(m[.z ﬁ_/)__d/, é)-: m,‘(é"_ 2

v (m(a®r)—1, B)= Pl (28]~ 1, )= m 2%

, 4 %z o
w(}nm;ﬂ—/), f §= P(m(.zé_/)) %)= m,z& /

wirlmi%r)rs, B = Plma® i) r), &)= ma®™

M(muﬁ—/)—;-a,ﬁ)sP(m(o?ﬁ;/)#;z, ﬁ)—/: M,,zé"/ Zf.’. 3
ac (28 1) +3, é)-—-P(m(,zﬂ—-//,LaJ £)-/= a2 Lz 4.

Set )7:;.)7(0{1?‘-'_/) ; then .o (p, ,'{:'5):/)();) t) is our relation 13. and has
been established, e.g., in [5,2]. The equalities.for ¥~/ and n-2
follow then from the inequality.4s % P and from 4. Similarly, the
result for »H+! follows from 2.

We have now

w 22”1 = ur (02 b )= M;z'ﬁ’/,u/ = P(‘»’7+.:) ﬁ)

If,w‘()}ﬂjé)has‘ the larger of the ‘gvo possible values, there is a
code Alite k) with elementg X, , ¢ =0, /,..., 2%, whose weights .7

verify wrz0 and

2 ::‘4}77'.2%—/1"/ /—-O/b' J;z o, L= //Dz)l")a?'é_r/‘
- - B,
Then ZM— = (n+2,)pzi "= (ma ;/)(.1;"://+ZJO- yielding Zel: =/

and thus J;# o for exactly ome subscript. From [L, Prop. L4] it follows

b-/ £~/

then that ma* ™4/ #/ has to be a non-negative multiple of &

- . ] &/
or A= 4% and then ®22. If 23 then, w~(n#a BJ=m" . For

))#3 the proof is similar: we obtain, if .~ (n+3, %)= Plnrs B)

S oy = (22 = ma B s NP ) + Tl

H- - -
or ZJ; =2 /4'“/- Hence m;aﬁ ‘ot = ZJ,; 71-‘(?)7—/),2ﬁ L

-2l
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but [4, Prop. 6] requires W-lc6 , 0¥ meo . This implies %#3=3 and
hence R”=3 .

Proposition 15 is thus established. Notice that the techniques used to

prove it yield also further, but less precise, results, For instance,
for B 4. '
i Cm(2%r)pdt, )%= Pl (a®er) bk G)=) = om 2 2.

-/
Proposition 17 F¥or mz‘o704r4-;& , and n—.—m(aé—/)/-_z 2 , we have
o=r
‘ n#+in .
wr(n-2 B )= Plyeg bY-I= —= =2 if  pum=sik
2 +47
wo(n-l, b= P-1, &)= " ~/
n+m
wrln k)= Plnt)= ~Z
( A;j e P(”:“/) é) r>/
= = o=
/e = P(’?*/J ﬁ)—/ r= 7.
nem ke %” om?
Notice that = “Mma +2.2 . The first three equalities

have been established in [2] (see also [5,6,7]); they could be obtained
also with the tools developed here and in [4]. To prove the last
equality observe that, if vy ,
WM. = o (n,B) & e (ni, RS P(nr, B)= _’1%’2 .
e
If =1 , them n+i=m (,?&—l)-/-,z-&—-,?,:(MHX—zﬁ—‘-l)-—/ and our

result follows from Prop. 16.

Corollary For %2 o,
o (280 2 #) = Pl2%~ 2 &)/
wir(2® ps, )= P(a%* 3 £)~/

In fact, using Prop. 16:

t-2

il

2%

2EF (2 é'/f-/,. %)= /L(f'[cei—/vl' 2,k )= /a/"(sei_/*' 3, )%

£z
o .

< (2% ra &) =

-25-
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5. Thg fu‘nc";i"on“r fpr Y R

The aim of this section is to prove the following result, that can be

found also in [8]:

Proposition 18 For #%4' , 4 is given by the table of fig. 13 together
with

21. w«(w-zﬁg %) :,a)“(h,ﬁ)'f‘-zi—/

Equivalently, we can describe «#~ as follows:

n
Corollarz 1 We have iy, /)=n and wr(n2) = [%‘]

Further: - (‘7,”/ 3): ¥ m ,«r(/fm) w) =8m
wr (Tmet, 8)= #m ar (15mel, %)= 8
mz |
wor (Tmez,3) = ¢ m i (15mez, 4) = T
ar(15mes #)=Pm
% : wor (Time3,3)= ey wr (15 mpih 4) = s/ :

I s (Tmedt 3)= 4 miz - (15ins8, #) = 8m+ 2
; W (Tme 8 3)=Hmi2 e (1Shsb, #) = gm+ 2
| wr (Tme, 3)= ¥ins3 wr(I5he7, 4) = 8imr 3

wr(I5hrd %) = gmsdt
,w(/ﬂ»ﬁ) ) 2 gpy ¥ mZo

wr(15mrte, 8 )= 2t ¢

(IS 1, #) = Em +5

w (75mii2, %)= EmrL
w(15mrs3 &)= & mrg
o (1Sm + 1% ¢) = Ponp g

Corollarz 2 For /@_—: 12, ,w-();,{)= P&,,ﬁ) . Furthermore . (4 3)=P(y, 1)
‘ 1f wh omea and .o(7mr2,3)2P(7mra, 3)"//' wr(n,¥)= Pln, )
if nk/smea, 1SmE 3, ISm+é, smtre, ISm o, and in these cases

wr(nd) = Plnp)-/.

-26-
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This corollary follows at once from the observation that

P(nf.z#"‘—/‘) )= Pin k) 25,

Finally it may be interesting to point out that the following formula

yields w- for B<4 ., Set

e,
n-ferr =2 (251 a,

ey

where ¢ is the largest integer such that (afé'—/)aéﬁ r‘l—éa‘-/rg , and a, .,
e .
s < 1. 1is the largest integer with (Qi—/;a%:‘: N-ters— 2. R°=1) A, 5
LY ’

then:

Corollary 3 For E= #, we have
% . ‘ =)
,w(n,fé)= Z 2 —I'ZIL = Je (W" B+ r :%-/ a; )
" o=

7‘L=/
This corollary is obtained by verifying first the wvalues of the table,
and then relation 21. To establish the proposition itself, we shall
actually prove directly the Corollary 1. For '%s/ , we use relation 9.

7
For &=, , it is easy to construct codes A(s,2) with,wM}:}‘_‘%J_j ; on

Vs
the other hand . (n, 2 )= Pin, o) :'_’%].

For ‘K =3 , Corollary 1 is obtained by setting k=23 in Prop. 16 and Prop. 17.
If we do the same for k=% we obtain all the desired relations, but those
for /§hy~+ and /Emrs” . These are obtained immediately by observing

that w4 «+/=/ and thus

IMelZ w8 ingy, #)S we (ISME 3,00 = Imrs

giving wrt/Smry, #,= Yty and, bY 5.5 o (/Smr s, v )= Pmiz.

It has been assumed in two papers [9, 10] that relation 21 holds for
all-f . This is false. We give here a counterexample to show that, in
particular, 21. does not hold for B=5. Let y=¢ and =5, If 21
holds, wr( 87 5)=wr (55" )+/é . Observe that wr(f{."j= - (this follows
in particular from Prop. 20, to be proven later). Thus 21 implies that

CriG) s 2k E

-08-
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In [5] and [2] it has been shown that w~(24 &)=/2 ; and in [11] there
is a code showing .¢r(/55)2% 7 . Hence, by relation L and Proposition 1,
,(,(r‘(."l,{)f 7#/2 = /9 , contradicting 21.

It is important to note that the periodicity suggested by 21 does hold

for ‘sufficientlz large N. More precisely, we have:

Proposition 19

To every/;% there corresponds an integer }/)0(5/" such that for any 5= )7&("/3’,;

: S R
ar (v A (%), Bl= arinb)r £ (2 /), £ef 23, ...
From relation 4 and Propositions 1 and 16, we have, for any y 7 and % :

,ar(n,«-('f&—/[o?’ﬁ—/)) 7%.)2_ rne b f‘—/.), ﬁ) + 2 -/

Setting %.(h)_ﬁ)’é )_: Plyr 40 {'—/)J .@.)-—,ar(}w-{(.?ﬁ—/)) £)> o, and remembering
that P(y f-('ﬁ.-}-/.)‘co'l_&—/))‘ %)= Phr% "(.15'—/4 ﬁ)/--?fé"l , we obtain:

i () (3Rs), B) + g (n, Horly B)m cor(ow e (2Ps) B 2% 5 1y 1, 6.
Therefore, @ (n, £/ k)= 2. (s, L, £
Since 2 is non-negative, non-increasing, and an integer, there exists
an integer %, (i kJ such that %(')7) 179 &):g (n, k £, for all L= %y k).

Since any 1 can be written in the form nen'r £ (2 t_,)
£y

_, where

= 1q'4,2 , it is sufficient to consider ¥ only in this range. Now
let I¥(£) be the set comsisting of the .,2%—/ integers of the form

W # [-‘0(%&/_(——?&__/)) for o< »n z—,;zﬁ'—-/.

The largest element of /Y5 is then the )76(2) in Proposition 19.
Proposition 18 merely states that }’/nkfé,)= £ for é.—./, 2 3, and 4 .

6. The region in which Ler(n b5 # .

We shall prove here

Proposition 20. The following relations hold:

£ Lt

e R and

a. ,ar(,g/f;)sz if and only If 2

1= n-fu= A for some integer % ;
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At/

b. w(/gﬁ.):d if and only if 01‘4',_” o2 and

n-fe=A#i for some integer -f}.

c. wrink)=y if, for some integer %
o) 2% =k and £r/=n-k =al-/,
or /5)&*}.}442%*/ and '/ff-.z.‘_‘/y—"&f:a‘f-/)
or M) ¢t = ,2{‘#2{"/:}144{” and n-%=2%4.
Since, for instance, wi(7,2)=# , we do not have "only if" in part c.
The proof will be based upon Hamming bound Hn, B)=ke+2 where €

< :‘7-F
is the largest integer such that r'Z C: ) “ . Proposition 6. and
its Corollary imply .wr(p,»-/)=2 and thus wr(nB)Z 2 if BE n-/ or

l=n-f. . On the other hand, under the assumptions of a., we have

n- b
o2 = 32&4.//‘}7/

that is wrly, £)%= H(n )= 2 . Thus the "if" part of a. is-established.

Let us now prove c.oe.) by first observing that, if r):,z,i' , there is a
Reed-Muller code A with 'é:,’zé £-7 and = ,22‘= wr4) = r(y, ﬁ)

On the other hand
N Ay At~/ al-s
l+n+laj=l+R + 2 > 2
R -il e
and thus Hinfa)= # as long as p=o  and n-h<%ak-/. We can now
prove the "if" part of b. Ifwnand %. verify the assumptions of b., then
n-! and A verify, the assumptions of a., and thus . (h-, 75,)—-—-2, or
2= w—(/;)[g‘)’:_ 32 . If now Hh-= ,zi'”—/ , by c. oa),ur(m% ﬁ.):# and thus
% j ‘
il )= 3 - If neR** ~/  we apply 3.: -l b)=rlo n-%-/) =
i,w‘(,?ﬁ/“/ /, R -/-— £-1)=3. Having thus obtained the "if'" part of b.,
Proposition 6 gives the "only if" part of a. and 5. gives the "only if"
part of b.
A RAs
Relation 5. yields also, because of b.,/m(/‘y) Bleypif R 2n<a

and »n-k=~4+2 , which is part of c. ﬁ) . For the larger values of n-%
considered in /) it is easy to show H(n,‘é)ﬁk‘/'
This last inequality holds true also under the assumption of 3‘) . Under

- those assumptions we have

,af(}a):é):,uﬁ(ﬁ) h—,,?ﬁ)‘i ,ar()l} '}7—-.2{ +/‘) = ¢hk

-30-
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by /) . This completes the proof of our proposition. The knowledge
of more accurate bounds for 4~ would enable us perhaps to extend these

results to reach regions of more practical interest.

7. A small table of values

We give here two tables of values of .« that have been found using the

results given above, those of [4], known codes and several well known

"tricks', The tables cover the following ranges:
=R =L B Eh= s00

7
I« % &n = aw.

The last is illustrated in fig. 1€ and 17. In the relatively few

instances in which the exact value of w is still unknown, lower and upper

bounds are given,

-31-
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T493-SR-T

12 3 ks o6 1 2 3 4 5 6 12 3 4 5 6
1 3k 22 19 17 186 16 67 bk 38 35 34 34233
2 1 35 23 20 18 16 lo 68 L5 38 36 34 3424
32 1 36 2k 20 }3 17 16 89 146 39 35 3 37-34
L 2 2 1 37 24 20 19 18 A-ry 70 46 L0 36 35 33-94
5 3 2 2 1 38 25 21 20 18 /e Tt b7 LO 37 36 ay-26
e b 32 21 39 26 22 20 19 18 T2 48 10 38 36 z4-3¢
7Tk k32 2 4o 26 22 20 20 spyy 73 43 41 38 36 35-36
8 5 L L 2 2 L1 27 23 21 20 /740 Th b9 k2 39 37 3L
9 ¢ 4 4 3 2 Lo 28 24 22 20 /720 75 50 b2 40 38 .34
10 ¢ 5 4 L4 3 43 28 2L 22 21 20 76 50 43 ho 38 3.3/
11 7 ¢ 5 U4 L Ll 29 2k 23 22 352/ TT 51 4 L0 39 zy.5¢
12 3 6 ¢ 4 U L5 30 25 24 22 /.12 78 52 44 Lo Lo 38
13 8 7 ¢ 5 4 L& 30 26 24 23 22 79 52 Ui 41 Lo 39
i 9 8 7 6 5 L7 31 26 24 2k 23 80 53 45 42 Lo Lo
15 108 8 7 5 L8 32 27 24 24 2} 81 5L L6 L2 41 Lo
lo 103 8 8 & Lo 32 28 25 2k4 24 82 sk L6 43 L2 ko
17 119 &8 3 7 50 33 28 26 24 2k 83 55 47 Lh U2 py-u
132 12103 3 8 51 34 28 26 25 g -z5 84 56 L8 kL L2 4q-y2
19 12109 8 8 52 34 29 27 26 4y-2¢ 85 56 L8 Lk L3 yycz,
20 1311109 8 53 35 30 28 26 2524 84 57 48 45 hh L2
21 1k 12 10 10 §y sl 36 30 28 27 26 87 58 49 L6 4k L3
22 14 12 11 10 /s 55 36 31 28 28 27 88 58 30 46 Li 4L
23 1512 12 11 ~n 56 37 32 29 28 28 89 59 50 L7 L5 Lk
24 16 13 12 12 - 57 38 32 30 28 28 90 60 51 48 L6 Lk
25 1o 1k 12 12 s 58 38 32 30 29 28 91 60 52 48 U6 L5
26 17 1k 13 12 n-s2 59 39 33 31 30 29 92 61 52 h8 L7 46
27 18 15 14 13 p-re 40 40 34 32 30 30 93 &2 52 438 43 1€
28 18 16 14 14 1213 ¢l 4o 34 32 31 30 o €2 53 4o kB LT
29 19 16 15 14 13-/# 62 41 35 32 3231 95 63 54 50 43 43
30 20 16 16 15 14 63 42 36 32 32 3?2 96 o4 54 50 4B 48
3L 20 17 16 16 15 b hp 36 33 32 32 97 64 55 51 49 43
32 21 18 16 18 1I¢ &5 43 36 34 32 32 93 65 5¢ 52 50 kieyy
33 22 18 1o 16 16 £ bh 37 34 33 32 99 6& 56 52 50 ug- 50
100 &6 55 52 30 wi-s?

Fig. ik ,(jf(/;/é) for = a0 Gt
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A

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1
2 | 21
3 | 321
L y 2 2 1
5 |5 32 21
6 6 4 32 2 1
7 17T 4 4 32 21
8 8 5 4 4L 2 2 2 1
9 9 6 4 4 32 2 2 1
10 106 5 4 4 3 2 2 2 1
i1 117 6 5 k4 4 3 2 2 2 1
12 128 6 6 4+ 4k 4 3 2 2 2 1
13 138 7 6 5 4 4 k 3 2 2 2 1
1L 149 8 7 6 5 4 4 4 32 2 21
15 15108 8 7 6 5 4 L 4 3 2 2 2 1
16 16108 8 8 6 6 5 4 L 4 2 2 2 2 1
17 17119 8 8 7 6 6 5 4 L 3 2 2 2 2 1
18 1812108 8 8 7 6 6 w54 4 3 2 2 2 2 1
19 1912109 8 8 8 7 66 #5h 4 3 2 2 2 2 1
20 201311109 8 8 8 7 6 $Geuysh 4 3 2 2 2 2 1
21 21 141210109938 8 8 7 6 sLty-5h b 3 2 2 2 2 1
22 22 14 12 11 10¢0 #38 8 8 7 6 ¥t k4 4 4k 3 2 2 2 2 1
23 2315 12 12 119 20838 8 8 7 &Fbyslh L4 4k 3 2 2 2 2 1
24 24 161312 129-0 Fpg0pr?78 8 8 6 s¢ b b b 4 3 2 2 2 2 1

Fig. 15 wr(yB) for 1285ns 24

...33..
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